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Rheological equations of state of dilute suspensions of rigid ellipsoidal particles (ellipsoids
of revolution) are derived [1-4] from the vantage point of the structural-continuum ap-
proach, with attention given both to rotational Brownian motion of particles and to their
inertia and the outer force fields, Interaction between particles is ignored in those treat-
ments given the low concentration of the suspended particles. In this paper, the earlier
findings [1-4] are generalized to higher concentrations. The effect of hydrodynamical in-
teraction between particles on the rheological behavior of the suspension is treated in the
light of the Simha approach [5].

We resort to the structural-continuum model [6, 7] with fixed length of orientation vector n;
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in deriving the rheological equations of state of weakly concentrated suspensions of rigid ellipsoidal par-
ticles.

Here tjj is the stress tensor, dj; is the strain-rate tensor, Nj = nj — wijnj, wjj is the velocity vortex
tensor, Mj is the moment of the forces acting upon an element of the substructure; aj,& , A,y are rheo-
logical constants, and 5ij’ €jj are the symmetric and skew-symmetric Kronecker symbols,

We take as our orientation vector nj the unit vector oriented on the rotation axis of the ellipsoidal
particle, Then the rheological constants figuring in Egs. (1) and (2) can be determined for any case by
generalizing Jeffery's results [8] with the aid of the Simha approach [5].

In accordance with [5], we consider a "constricted" flow of an ellipsoidal particle within a sphere
whose center coincides with the center of the particle, and whose radius R = (@b?/ V)i/ 3 where 2a and b
are the rotation axis and the equatorial radius of the particle, respectively, and V is the volume concentra-
tion of suspended particles. The solution of the actual hydrodynamical problem in the Stokes approxima-
tion, satisfying the condition of "sticking” on the surface of the particle and the condition of velocity per-
turbations vanishing on the surface of the sphere in question, will be sought by the method of successive
approximations,

As our first approximation we take the Jeffery solution [8] which, in a moving frame of reference x;
with origin at the center of the particle and axes coinciding in direction with the directed principal axes of
the ellipsoidal particle, exhibits the form
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where u; is the velocity, uyj is the velocity of the unperturbed stream; p is the pressure; p, is the pressure
in the unperturbed stream; r is the modulus of the radius vector; 4 is the dynamical viscosity of the solvent;
Axj are quantities defined in [2]; @, = ApgXpXq - This solution accurately satisfies the boundary conditions
on the surface of the sphere; the velocity perturbation on the surface of the ellipsoid does not exceed a
quantity of the order OR™%).

We now find the second approximation in the problem, such that the velocity perturbation on the sur-
face of the ellipsoid will not be greater than a quantity of the order O(R™%). For that, we add to Eq. (3) the
following solution obtained by the method employed in [8]:
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B = a2a0 + bz,BO, Qos Bos %'s Bo's %", B," are functions of the ratio a/b defined in [8]; wji is the angular
velocity of the particle, Uj and P are the next terms in the expansion of the Jeffery solution having quanti-
ties of the order Uj ~ O(R-%) and P ~ O®R ™ on the surface of the sphere.

Addition of the solution (4) to equations (3) makes it possible to satisfy the boundary conditions on the
surface of the ellipsoid exactly, but the solution so constructed fails to satisfy the boundary conditions on
the surface of the sphere.

Once one other particular solution useful in satisfying the boundary conditions on the spherical sur-
face exactly has been found, together with the solutions (3) and (4), we arrive at the definitive solution of
the problem in the second approximation
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where Uj', P' is the particular solution of the problem satisfying the following boundary condition on the
surface of the sphere: Uj' = -Uj. Given the cumbersomeness of the expression, Ui, Ui', P, and P' are not
calculated out. As the investigation shows, these expressions make no contribution to the averaged stress
tensor constructed below for the problem in question.

The stress tensor 0 jj for the medium [9] can be found from the velocity and pressure perturbation in
the moving system of coordinates xj. By averaging the stress tensor determined by the solution (8) over
the volume of the sphere, and proceeding from integration over the volume to integration over the surface
of the sphere [9, 10, 2] we get
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The orientation equations for an ellipsoidal particle, when the moment of inertia about the rotation
axis of the particle (prolate ellipsoids)is neglected appear inthe moving system of coordinates xj In the form
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where I is the moment of inertia of the ellipsoid about the axis lying in the equatorial plane, M;’ is the
moment of the external forces, and Mj* is the moment of the hydrodynamical forces whose components, in
the case in point, exhibit the form
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Considering Egs. (1) and (2) in the moving system of coordinates xj(n; =1, ny =ny =0, iy =0, 0, = wy,
g = —wy, iy = % — w32, fy = by + wywy, Hy = =W, + wywy), and comparing Egs. (1) with (7), and (2) with
(8), (9), we find the rheological constants appearing in Egs. (1), 2),¢& =1
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Since the orientation vector characterizes the behavior of the substructure (microparticle, macro-
molecule), upon constructing the rheological equations of state we have to perform an averaging process in
Eq. (1) with the aid of the distribution function of the angular positions of the rotation axis of the suspended
particle F which, together with determinate forces acting on the particle (hydrodynamical forces, external
force fields), can be taken under consideration, and also forces due to the rotational Brownian motion, As
shown in [3], we have to introduce into Eq. (2), in Mj, the moment

dln F
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where k is Boltzmann's constant, and T is the absolute temperature.

Accordingly, we take, as the rheological equations of state of weakly concentrated suspensions of
rigid ellipsoidal particles, Eq. (1) with coefficients a i related to the parameters which characterize the
geometry and concentration of the suspended particles by equations (10); Equation (1) is averaged with the
aid of the distribution function F satisfying the equation

OF | 8t = DrAF — div (Fe) 11)

where t is the time, Dr = —kT /7y, w is the angular velocity vector of the particle determined from Eq. (2),
Ty =ty = (ay + aldim (Rand) B35 + @yl (Asnningd +
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Since ¥ was obtained with "constricted" flow taken into account, Dr = —kT/ y takes into account the

effect of the hydrodynamical interaction of suspended particles on the rotational Brownian motion of the
particles.

We note in summary that, when we take the hydrodynamical interaction of the suspended particles
into account on the basis of the procedure outlined in the article, the rheological equations of state of the
weakly concentrated suspensions of ellipsoidal particles coincide in form with the equations of state of
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dilute suspensions of ellipsoidal particles, The hydrodynamical interaction between the suspended par-
ticles is manifested in the changes experienced by the distribution function F and by the rheological con-
stants,
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